闪烁提示您:看后求收藏(第一百零四章 速度竞赛,国策,闪烁,海棠文学城),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
很明显,继续提高导弹的飞行速度已经没有多少意义了。
要想突破由高能激光器组成的最后防线,只能在被动防护上做文章。说直接点,就是在弹头上涂抹一层足够好的涂料。事实上,这种涂料并不神秘,就是用在返回式卫星、宇航飞船与航天飞机上的隔热涂料。准确的说,这种涂料是通过受热汽化来带走热量,而不是隔绝热量。从hs-29开始,几乎所有采用了高抛弹道,以垂直俯冲的方式发起末段攻击的巡航导弹上都使用了这样的涂料。
当然,再好的涂料,也有个极限性能。
说简单一点,随着激光器的输出能量越来越高,而且在攻击的时候发出多个脉冲,所以要想彻底抵消掉激光带来的能量,就得涂上足够厚的涂料。事实上,导弹的弹头是非常有限的,涂料的厚度也是非常有限的。激光器的能量以每年30%以上的速度递增,而导弹的涂料厚度是不可能以这个速度递增的。
不得已,导弹工程师不得不寻觅更好的解决办法。
从理论上讲,“电离散射干扰”最有发展前途。该干扰方法也不复杂,就像“电磁干扰系统”一样,通过释放一些电离物资来改变周围空气的折射率与散射率,让激光束在击中目标前发生折射或者散射,从而分散激光束的能量。当然,这么做的难度也不小,毕竟电离物质需要消耗大量能量,而小小的弹头里根本塞不进多少东西。
当然,也有比较简单的解决办法,那就是采用“锐利外形”。
说直接一点,就是把导弹的弹头设计得由长又尖,就如同放大了的钢针一样。虽然这么做会大大降低弹头的有效载荷,并且增加了导弹的设计难度,但是在对抗高能激光器的时候却有得天独厚的好处,那就是激光束很难直接攻击某一点。打个比方,激光束迎面照射弹头的时候,除了弹头尖端之外,照射在弹头侧表面上的激光束如同冬天的阳光,根本谈不上“毒辣”。这种设计有一个更加明显的好处,那就是非常适合过顶攻击,即导弹从目标的天顶方向上发起攻击。
事实上,hs-35就采用了这种弹头。
开战的时候,h-9s机群使用的远程巡航导弹中,除了小部分是hs-29之外,绝大部分都是hs-35。
美国方面也不甘落后,在2038年就开始大批量采购agm-1a型高超音速巡航导弹。
这是一种与hs-35非常相似的巡航导弹,由于采用了大长径比的弹头,所以弹头贯穿整个弹提,3台采用保型设计的火箭/冲压一体式发动机“捆绑”在弹头外面。发射后,导弹首先在尾部的火箭助推发动机的推动下,加速到2马赫,然后冲压发动机开始工作,将导弹的飞行速度提高到10马赫左右,并且将飞行高度提高到40千米。如果攻击距离超过2000千米,导弹将采用“乘波弹道”,即利用大气层的张力,像打水飘一样,在大气层顶部以波浪形的弹道飞行。如果攻击距离在2000千米以内,导弹则一直在电离层内飞行,以免过早被敌人的探测系统发现。导弹目标上空前,导弹的发动机转为火箭工作模式,即利用携带的氧化剂提高燃烧效率,将导弹的飞行速度由10马赫提高到20马赫,并且通过姿态控制火箭发动机改变导弹弹道,使导弹进入俯冲攻击阶段。重新进入平流层之后,导弹的3具发动机与弹头分离。因为在这个时候,发动机与弹头的速度相当,所以3具发动机起到了诱饵弹的作用。进入对流层之后,3具发动机上的自毁装置才会启动,将其炸成碎片,为已经冲到前面的弹头提供掩护。因为弹头采用了大长径比的外形,所以在冲刺末段,最大飞行速度将接近30马赫,飞完10千米,仅仅需要1秒钟!
最先进的高能激光拦截系统也只能在1秒内进行2次拦截,而为了确保摧毁目标,一般会对同一个目标进行2次拦截。因为1套地面拦截系统一般只有4到6组高能激光器,所以最多只能同时拦截4到6枚巡航导弹。也就是说,用9枚导弹攻击1个目标的话,至少能保证3枚导弹击中目标。
事实上,高能激光器在对付hs-35与agm-1a这类导弹时,几乎没有效果。
共和国与美国的能量武器专家早就认识到了这个问题,所以才在高能激光器刚刚进入鼎盛时期的时候,加大了粒子束武器与电磁炮的研究力度。不管怎么说,激光武器的作战介质是没有质量的光子,只能通过传递能量的方式,摧毁目标的内部结构,而不能对目标造成直接毁伤,拦截效果自然好不到哪里去。要想提高拦截效果,就得使用有质量的介质。粒子束武器的介质就是有质量的粒子(包括电磁、中子、质子、原子核、分子等等),而电磁炮的戒指更是宏观物质。
早在30年代初,共和国与美国就先后开始研制粒子束武器。
当然,从现实情况来看,速射电磁炮的应用前景更加乐观。按照共和国物理实验中心的理论,只要能够在螺旋电磁炮方面取得足够的进展,就有可能研制出炮口速度超过每秒20千米的电磁炮(轨道电磁炮的极限炮口速度为每秒10千米,实际最多只能达到每秒8千米)。因为储能设备、脉冲放电器等关键设备已经在研制高能激光器的时候得到解决,而且螺旋电磁炮的炮弹不与炮管接触,不会摩擦生热,也就不用考虑射速过高产生的热量,所以速射电磁炮的射速能够超过每分钟20000发。如果摧毁1个目标至少需要用10发炮弹形成一道弹幕的话,那么只需要30毫秒的开火时间,100吉瓦级激光器一个开火周期在20毫秒左右。按照计算机模拟分析得出的结论,如果电磁炮的炮口速度能够提高到每秒40千米以上,射速提高到每分钟50000发以上,速射电磁炮的拦截效率就将超过高能激光器与粒子束武器,成为首选末段拦截系统。
不管怎么说,导弹与拦截系统之间的斗争就是速度的竞争。
谁更快,谁就更有希望取胜。
当然,在实战应用中,没有哪个指挥官去考虑这些技术上的问题。
对任何一名指挥官来说,只用考虑需要花费多少导弹才能击毁目标,而要达到战役目的需要摧毁多少目标,以及哪些目标。
因为杜奇威早就有所准备,所以美国空军没有浪费昂贵的巡航导弹。
在这波突然而至的攻击中,处于防御的一方根本没有还手的机会,毕竟还没有任何一种地面防空系统能够有效对付大约2000千米外的战略轰炸机。因为打击来得太突然,所以防御一方甚至来不及做出反应。
对裴承毅来说,这也许算得上是开战以后,最大的一个“意外”吧。
本章未完,点击下一页继续阅读。